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A new and very general technique for simulating solid-fluid suspensions has been 
described in a previous paper (Part 1) ; the most important feature of the new method 
is that the computational cost scales linearly with the number of particles. In this paper 
(Part 2), extensive numerical tests of the method are described; results are presented for 
creeping flows, both with and without Brownian motion, and at finite Reynolds 
numbers. Hydrodynamic interactions, transport coefficients, and the short-time 
dynamics of random dispersions of up to 1024 colloidal particles have been simulated. 

1. Introduction 
In a previous paper (Ladd 1994), Part 1 of this series, the theoretical foundations of 

a numerical method for simulating solid-fluid suspensions were described. By 
combining Newtonian dynamics of the solid particles with a lattice-Boltzmann model 
of the fluid, a flexible and efficient algorithm was constructed whose computational 
cost scales linearly with the number of particles. In this paper the focus will be on the 
implementation of the algorithm for a variety of flow problems, and the numerical 
results. 

In 92, there will be a brief recap of the numerical method described in Part 1. 
Simulations of creeping-flow hydrodynamic interactions are described in Q 3. Results 
are presented for periodic arrays, containing one or two spheres per unit cell, and for 
random dispersions of spheres; a comparison with a finite-difference algorithm is also 
reported. Section 4 describes simulations at finite Reynolds number; flows past 
cylinders and spheres are compared with finite-difference and finite-element com- 
putations at Reynolds numbers up to 200. Section 4 describes time-dependent flows, 
before the hydrodynamic interactions are fully developed, and 0 6 deals with 
fluctuations and Brownian motion. The work is summarized in 97. 

2. Numerical method 
In the lattice-Boltzmann approximation, the state of the fluid is characterized by the 

discretized one-particle velocity distribution function ni(r, t),  which describes the 
number of particles at a particular node of the lattice Y, at a time t, with the discrete 
velocity ci. The hydrodynamic fields, mass density p, momentum densityj = pu, and 
momentum flux 11, are moments of this velocity distribution: 
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c,, CfY c,, c2 i c,, cty c,, c, i c,, CtY c,, ct 

1 1 0 0 1  7 1 1  0 4 2  13 1 0 - 1  4 2  
2 - 1  0 0 1 8 -1 -1 0 4 2  14 -1 0 1 4 2  
3 0 1 0 1  9 1 - 1  0 4 2  15 0 1 1  4 2  
4 0 - 1  0 1 10 -1 1 0 4 2  16 0 -1 -1  4 2  
5 0 0 1 1  11 1 0 1 4 2  17 0 1 -1 4 2  
6 0 0 - 1  1 12 -1 0 -1 2 /2  18 0 -1 1 4 2  

TABLE 1. Labelling of the 18-velocity model. For each label i, the velocity vector and speed 
(in lattice units) are shown. 

The specific model used in this work has 18 different velocities corresponding to the 
near-neighbour and second-neighbour directions of a simple cubic lattice ; a complete 
list of the velocities is given in table 1. All quantities in this paper are expressed in 
'lattice units', for which the distance between nearest-neighbour nodes and the time for 
the particles to travel from node to node are both unity. 

The time evolution of the distribution functions is described by a discrete analogue 
of the Boltzmann equation (Frisch et al. 1987), 

(2.2) 
where Ai is the change in ni due to instantaneous molecular collisions at the lattice 
nodes. The post-collision distribution ni + Ai is propagated to the neighbouring node 
lying in the direction of the velocity vector ci. A detailed description of the collision 
process is given in Part 1. In essence, the collision operator is evaluated by linearizing 
about an appropriate equilibrium distribution, constructed so that 

n,(r + ci, t + 1) = ni(r, t )  + Ai(r,  t) ,  

p = C nzq, j = C n;qci, neq = C n,"qci ci = p l  +puu. (2-3) 
i i i 

The equation of state is given by p = pcf, where c, = l/f is the speed of sound. 
Molecular collisions conserve mass and momentum but change the non-equilibrium 

(or viscous) part of the momentum flux IIneq = I I - I I e q .  In our simulations only the 
shear modes survive the collision process so that the post-collision momentum flux II' 
is given by 

where the overbar indicates the traceless part of the tensor. The parameter h controls 
the rate of relaxation of the stress tensor; it is related to the shear viscosity of the fluid, 

and lies in the range -2 < h < 0. In the low-Reynolds-number limit, fluid inertia is 
neglected; in this case (2.4) can be simplified to 

(2 * 6) 
The post-collision distribution is given in terms of the mass density, momentum 
density, and updated momentum flux II', 

the coefficients a: are model dependent; values for the 18-velocity model used in this 
work are given in (2.11) of Part 1. 

The solid particles are defined by a boundary surface, of any size or shape, which 
cuts some of the links between lattice nodes (see figure 2 of Part 1). The fluid particles 
moving along these links interact with the solid surface at boundary nodes placed 
halfway along the links. At each boundary node there are two incoming distributions 

rI' = I I e q  + (1 + A )  (n - ne", (2.4) 

'I = -+p(2/h+ l), (2.5) 

II' = p l  + (1 + A )  n. 

ni + Ai(n) = a?p + afi j ,  cia: + a2Z7ipc,,c,p + a",iZ7i, - 3pc3 : (2.7) 
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ni(r, t+) and n,(r + ci, t+), corresponding to velocities ci and ci,(ci, = - ci) parallel to the 
link connecting Y and Y + ci ; the notation ni(r, t+) = yli(r, t )  + Ai(r, t )  is used to indicate 
the post-collision distribution, (2.7). The velocity of the boundary node ub is 
determined by the solid-particle velocity U, angular velocity 0, and centre of mass R, 

(2.8) 
By exchanging population density between ni and ni. the local momentum density can 
be modified to match the velocity of the solid-particle surface at the boundary node, 
without affecting either the mass density or the stress, which depend only on the sum 
ni +nir. The precise form for the boundary-node collision operator is 

ub = U + 0  x ( r+ ic i -  R). 

1 (2.9) 
ni(r + ci, t + 1) = n,.(r + ci, t+) + 2appub - ci, 

niI(r, t + 1 )  = ni(r, t+) - 2a?pub - ci. 

As a result of the boundary-node interactions (2.9), forces are exerted on the solid 

(2.10) 
particles, 

f ( r++c i ,  t++) = 2[ni(r, t+)-ni.(r+ci, t+)-2a~pub-ci] ci; 
thus momentum is exchanged locally between the fluid and the solid particle, but the 
combined momentum of solid and fluid is conserved. The forces and torques on 
the solid particle, obtained by summing f ( r  + fci) and (Y + +ci) x f ( r  + +ci) over all the 
boundary nodes associated with a particular particle, are then used to update the 
particle velocity and angular velocity, according to the laws of Newtonian mechanics. 
The mass and moment of inertia of the particle are preassigned, depending on the 
assumed distribution of mass within the particle. Since the forces at the boundary 
nodes are generated at the half-integer time steps, the forcefat the intermediate integer 
time, - 

is used to update the particle velocities every two time steps: 

The particle mass M and moment of inertia / are preassigned parameters which control 
the rate at which particles respond to the fluid flow; usually M and / are on the order 
of several thousand (in lattice units). Since the velocities vary slowly on the timescale 
of a lattice-Boltzmann cycle, the precise form for the velocity update is usually not too 
important; however, it is important to use time-smoothed forces and torques, as 
described in (3.18) of Part 1.  

(2.11) 

U ( t + l )  = u(t-1>+2M-lF(t), 0 ( t + 1 )  = Q(t-1)+2/-1.T(t). (2.12) 

f ( Y + + C i , t )  = ~ l f ( Y + ~ C i , t - + ) + f ( Y + i C i , t + + ) ] ,  

3. Low-Reynolds-number hydrodynamics 
Low-Reynolds-number hydrodynamics is applicable to an intermediate range of 

particle sizes. For instance, in a suspension of particles sedimenting in water under the 
influence of gravity, the appropriate size range is between approximately 1 pm and 
1 mm. If the particles are smaller than about 1 pm, Brownian motion is important and 
the effect of fluctuations in the fluid must be considered (see $6); for particles larger 
than about 1 mm, fluid inertia begins to have an effect (see $4). In this section three 
different sets of problems are examined : periodic arrays of spheres, hydrodynamic 
interactions between two spheres, and the properties of random dispersions of spheres 
as measured by the short-time transport coefficients. The simulations were run under 
conditions such that the inertial contributions to the momentum flux were completely 
ignored (see (2.6)). In all cases, results are compared with accurate numerical solutions 

(3 .1)  
of the Stokes equations, 

determined by multipole moment expansions of the force density on the particle 
v . u  = 0, v p  = yV%, 
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FIGURE 1. Geometry for quasi-periodic simulations. The figure illustrates a system that closely 
approximates a periodic one under an external flow. The lattice nodes are shown by solid circles and 
the boundary nodes by solid squares. The arrows indicate velocity directions ci and ci. at the 
boundary nodes (cf. figure 2 of Part 1). Periodic boundary conditions are applied across the planes 
indicated by solid lines ; the configuration of solid particles within the quasi-periodic unit cells 
(bounded by dashed lines) are identical. Macroscopic flows can be set up by the planes of boundary 
nodes at either end of the system. With this geometry we can set up uniform flow perpendicular to 
the boundary walls or an approximately linear shear flow parallel to the boundary walls. The 
properties of the central cell are close to those of a truly periodic system; it is not necessary, 
apparently, to include more cells, although this can be done if required. 

surfaces (Ladd 1988, 1990). A comparison with a finite-difference solution of the 
Stokes equations is also reported (53.5). 

3.1. Periodic arrays 
In this section we focus on the translational and rotational friction coefficients of a 
simple cubic lattice of spheres. The force on a steadily moving sphere is computed 
under conditions of vanishing volumetric flow rate (Batchelor 1972), which is enforced 
in two different ways. In the first case a quasi-periodic system is used, as illustrated in 
figure 1. Each solid particle is given the same translational velocity, perpendicular to 
the boundary walls. Since the system is Galilean invariant, the measured drag force 
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depends only on the velocity difference between the solid particles and the boundary 
walls. The most convenient choice is to set the boundary-wall velocities to zero, so that 
the volumetric flow rate is zero. Then the translational friction coefficient is just the 
drag force on the central sphere divided by its velocity. It has been verified that these 
simulations are unconditionally stable for any particle velocity or flow rate (set by the 
boundary-wall velocity), and that the friction coefficient is independent of velocity. For 
more than three cells, the drag force on the central sphere is independent of the number 
of cells in the quasi-periodic array, implying that three cells is enough to simulate a 
fully periodic system. 

An alternative method is to hold the particles stationary (by considering them to be 
infinitely massive) and apply a uniform force density throughout the fluid, to simulate 
a pressure gradient across the system. For example, if a constant increment Aj, is 
applied to the x-component of momentum at each node, the macroscopic pressure 
gradient is given by V,p = Aj,. The fluid velocity at each node is measured after half 
the force has been applied; it was found that this symmetrical procedure led to an 
identical result to that obtained with quasi-periodic systems. The measured drag force 
on the particle FD is smoothed over two successive time steps (see (2.11)), 

'b 

here rb denotes the location of a boundary node. The balance of forces at steady state 
(for instance during sedimentation) implies that the total (gravitational) force on the 
sphere is balanced by the sum of the drag force and the buoyancy force FB = - V, Ajz 
(V, is the volume of the sphere) ; thus 

FD + FB = (V-  V,) Ajz, (3.3) 
or equivalently FD = VV,p. At steady state, the simulations satisfy this identity 
precisely. The volumetric flow rate Uv is measured from the time-smoothed flow field 
(see (3.20) of Part l), summed over all lattice nodes in the volume V :  

u, = c i[u,(r, t -  1) + 2u,(r, t )  + u&, t + l)]. (3.4) 
I €  v 

Results from simulations at low solids volume fraction (less than 10 YO) are shown in 
table 2 ; numerical values from both quasi-periodic and pressure-driven simulations 
were indistinguishable. 

Since the particle surfaces are discrete, it is not possible to determine an exact value 
of the particle radius a priori. An effective hydrodynamic radius a can be computed 
from the drag coefficient gT = FD/ U ,  of a simple cubic lattice of spheres at low solids 
concentration, using the asymptotic expression for the drag coefficient (Hasimoto 
1959) : 

The first term on the right-hand side is the Stokes result for an isolated sphere; the next 
three terms are the periodic corrections to the Stokes drag for a unit cell of length L. 
In table 2 three different estimates of the radius of the solid particle are given. The first 
is the input radius a,, which defines the boundary surface of the sphere; all lattice nodes 
inside this surface comprise the solid particle. Obviously, there is a range of values of 
a, which lead to the same object, for instance 4 2  < a,, < d 3 .  Thus a reasonable and 
well-defined measure of the size of the object is the radius of the equal-volume sphere 
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a, a, L 5' a 
344 1.53 
242 1.54 
159 1.54 

596 2.60 
354 2.61 
256 2.61 

1206 4.50 
847 4.52 
559 4.53 

8.5 8.48 32 2015 8.47 

TABLE 2. Hydrodynamic radii of near-spherical objects. The friction coefficient 5' = F,/U, of a 
simple-cubic array of particles has been used to determine the effective hydrodynamic radius a in a 
suspending fluid with kinematic viscosity v = $. The radius of the equal-volume sphere a, is also 
shown; the input radius a, defines the boundary surface of the object. 

1.5 1.66 c 
116 

2.5 2.68 I :: 
132 

4.5 4.53 I;: 
132 

V U V a 
1 
6 4.53 
1 

- 

4.79 3 4.42 
4.67 3 4.27 
4.60 3 3.70 

- 
ih 5.12 
- 
1 - 2 

1 - 8 

96 

24 

12 

- 

- 

TABLE 3. Hydrodynamic radii of near-spherical objects as a function of fluid viscosity. The 
hydrodynamic radius of an object with input radius a, = 4.5 (a, = 4.53) is shown for various values 
of the kinematic viscosity v of the fluid. Numerical values for a were determined for a simple cubic 
lattice as in table 2. 

a,. The effective radius, determined from (3.5), is also shown. All results in table 2 are 
for h = - 1 (equation (2.4)), corresponding to a kinematic viscosity v = (equation 
(2.5)). It can be seen that a consistent hydrodynamic radius emerges from these 
simulations, confirming that the simulated drag coefficients for dilute periodic 
suspensions are in agreement with (3.5). It should be emphasized that the same value 
for the effective radius of an object is used in all subsequent simulations; the 
hydrodynamic radius a is not treated as a variable parameter. However, the effective 
radius is not completely independent of the fluid viscosity. Over a useful range of 
viscosities < v < l), a varies by about 1 lattice spacing (table 3). For large enough 
objects this variation could be ignored, but in most practical instances the effective 
radius must be calibrated for each fluid viscosity. 

A kinematic viscosity I, = + ( A  = - 1) is the natural choice for the simulations, since 
the viscous stresses decay instantaneously. Moreover, the effective hydrodynamic 
radius a, determined from dilute sedimentation rates, is almost identical to the radius 
of the equal-volume sphere a,. Thus the size of the object can be accurately inferred 
without recourse to sedimentation tests. For creeping flows there is no reason to use 
any other viscosity, but at higher Reynolds numbers a lower viscosity is useful, since 
it leads to a reduced Mach number (for fixed object size) at a given Re. 

In order to test the simulation method at higher solids concentrations, the 
translational and rotational friction coefficients of a simple cubic lattice have been 
calculated over the entire density range. The rotational friction coefficient was 
determined by measuring the steady-state torque for a fixed rotational velocity. The 
results are shown in figure 2 for various sized spheres. The overall agreement is quite 
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FIGURE 2. Translational and rotational friction coefficients of a simple-cubic lattice of spheres. The 
drag coefficients, normalized by the isolated-sphere values, are plotted as a function of volume 
fraction for several different-sized objects. The solid lines are determined from accurate numerical 
solutions of the Stokes equations (Ladd 1988). 

good; spheres of radius 5-10 lattice spacings give quantitative results over the 
whole concentration range. It is also possible to 'tune' the particle shape to a certain 
extent. For instance, the rotational friction coefficient for a sphere of radius a = 8.47, 
corresponding to an input radius a, = 8.5, is about 10% too large at high solids 
concentrations. However, for a slightly smaller sphere, a = 8.44 (a, = 8.4), the 
rotational friction is only about 5 %  too large. This difference arises because of the 
discrete lattice, which, in certain directions, blunts the surface of the sphere into flat 
plates, which have different areas for the two different-radius spheres. This difference 
in area has a much greater effect on the rotational friction than the translational 
friction because the faces are in relative motion. However, these differences are less 
severe in random dispersions than for lattice arrangements, and no attempt has been 
made in this work to optimize the particle shape. 

3.2. Hydrodynamic in term t ions 
A more stringent test of the simulations occurs if there is relative motion between the 
solid particles. In such cases there are singular lubrication forces when the particles are 
close to contact; forces along the line of centres diverge as s-l and forces perpendicular 
to the line of centres diverge as Ins-', where s = (R,,-2a)/a is the gap between the 
particles relative to the radius. The simulations comprise a periodic unit cell, 
2L x L x L,  with spheres located at (Li-iL, iL,  $5). The two spheres move with 
opposite velocities u and --u; thus there is no net momentum flux. For all velocities, 
the drag force was found to be a linear and superposable function of u. In figure 3 the 
simulation results are compared with integral-equation solutions (as in Ladd 1988) for 
an identical geometry, including an exact calculation of the lubrication forces (Bossis 
& Brady 1987). Again the overall agreement is good; the simulations are accurate for 
particle separations of 1 lattice spacing and beyond. However, the divergence of the 
lubrication forces near contact is not reproduced; instead the friction coefficients 
asymptote to a value more or less the same as that found at separations of 1 lattice 
spacing. These results could be improved upon by taking explicit account of the 
lubrication forces, as in Stokesian dynamics and related methods (Bossis & Brady 
1987 ; Ladd 1990) ; however lattice-Boltzmann simulations of the short-range friction 

1 1  F L M  271 
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FIGURE 3. Hydrodynamic interactions between pairs of spheres. The parallel and perpendicular 
friction coefficients are plotted as a function of s = R/a-2 .  The results at s = 0 are for objects in 
closest possible proximity. The systems are periodic, with a two-sphere unit cell. The solid lines are 
again solutions of the Stokes equations in the same periodic geometry. 

coefficients are much more accurate than typical multipole-moment or boundary- 
integral methods and corrections for lubrication are not really necessary. Bulk 
properties of a suspension of such particles, which sample all distances, will be less 
sensitive to the short-range interactions than the single-configuration results reported 
here. It will be seen that accurate simulations of the transport properties of dense 
suspensions can be achieved with quite small particles. 

3.3. Transport coeficients 
In this section hydrodynamic transport coefficients of equilibrium distributions of 
spheres are reported. Experimentally these results correspond to short times, before 
any significant changes take place in particle configuration as a result of the externally 
imposed flow. We have computed the permeability of fixed random arrays of spheres 
(K) ,  the collective mobility (p) or sedimentation velocity, the short-time self-diffusion 
coefficient (Ds) ,  and the high-frequency viscosity (rm). In figure 4, results from lattice- 
Boltzmann simulations are compared with independent calculations, based on 
multipole moment expansions of the Oseen equation (Ladd 1990); these latter results, 
when corrected for finite-size effects, are in excellent agreement with experiment. Here 
we compare results for small periodic systems containing 16 spheres per unit cell in all 
cases; thus the plots in figure 4 differ somewhat from those reported earlier (Ladd 
1990), because of finite-size effects. Typically, we average over 10-100 different 
configurations of spheres for each calculation ; the individual configurations were 
generated with a standard hard-sphere Monte Carlo program (Allen & Tildesley 1987). 
Thus we have a relatively rapid method of checking the accuracy of the simulations as 
a function of volume fraction $ and particle size a. The results are clustered around 
three typical concentrations: dilute ($ M 0.05), semi-dilute (q5 % 0.25), and con- 
centrated ($ % 0.45). 

The permeability of a fixed array of spheres relates the volume-averaged velocity 
(Uv) of the fluid, (3.4), to the pressure gradient 

uv = -(K/r)VP; (3.6) 
the velocity field is averaged over the whole volume of the system, including the interior 
of the spheres where the fluid is at rest. Thus the permeability of a random array of 
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FIGURE 4. Hydrodynamic transport coefficients of random arrays of spheres. Results from 
simulations of 16 spheres (with periodic boundary conditions) are compared with accurate numerical 
solutions of the Stokes equations (Ladd 1990). The lattice-Boltzmann results (present work) are 
plotted as symbols; results from Ladd (1990) are shown as solid lines. The statistical errors in both 
sets of calculations are smaller than the plotting symbols. 

spheres is calculated in a similar fashion to the translational friction coefficient of an 
isolated sphere; each sphere in the sample is held fixed and a uniform force density 
V p  = Aj is applied to every node at every time step. Numerical results show that the 
lattice-Boltzmann simulations predict the permeability of random dispersions of 
spheres rather well. Particles with radii as small as 2.5 lattice spacings are just as 
accurate as Stokesian dynamics (Phillips, Brady & Bossis 1988), although larger 
spheres (a  > 5)  are needed for accurate results at high concentrations. 

The collective mobility (or sedimentation velocity) and self-diffusion coefficient also 
converge rapidly with particle radius, as shown in figure 4. It can be seen that the 
lubrication forces, which contribute in an average way to the self-diffusion coefficient, 
are quantitatively accounted for by the simulations. The methodology for determining 
the collective and self-mobilities is as follows. An external force eZt. is applied to one 
particle (for D, = k ,  T,,)  or is divided equally among all N particles (for p);  this 
external force is balanced by a force density Aj = - &,,/ V which is applied to all nodes 
in the fluid: thus 

11-2 
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Many of the results for D, were computed by an alternative and comparable method 
in which a force & is applied to one sphere and a balancing force - e z t / ( N -  1) is 
applied to all the other spheres. By measuring the average particle velocity of the 
tagged sphere (U , ) ,  ,us can be obtained from the relation 

To simulate the motion of particles under the action of an external force, the fixed- 
particle constraint must be removed and the particle velocities updated according to 
(2.12). The total force on the particle 4 is given by the sum of hydrodynamic force and 
the external force; at steady-state these forces balance and the particle velocities are 
constant. In these calculations the particle mass and inertia were set to between 2 and 
4 times that of an equal volume of fluid. 

The simulations are unstable for small values of either the mass or the inertia, 
because the boundary conditions (2.9) reflect almost all the incoming momentum. 
From a molecular point of view this corresponds to the assumption that the solid 
particle is much more massive than the fluid molecules. It is straightforward to 
establish an approximate stability criterion. For a quiescent fluid (i.e. ignoring 
variations infi), the momentum transfer per unit area per time step is approximately 
- 2pu,. Integrating over the surface of the sphere we find, from (2.12), that the change 
in particle velocity AU is given by 

A U z - (6//h) U, (3.9) 

where /3 = p,/p is the ratio of solid-particle mass density to fluid mass density. A 
similar expression holds for the angular velocity; the numerical factor in this case is 10. 
Thus stable solutions are expected if pa > 10; it has been verified empirically that this 
is indeed correct. 

The high-frequency viscosity for fixed configurations of spheres in an external shear 
flow has also been computed. We have not, as yet, been able to devise a homogeneous 
shear algorithm, analogous to those used for molecular liquids (Hoover et al. 1980; 
Ladd 1984). Thus a quasi-periodic system is again used, with a geometry similar to that 
shown in figure 1 but with many spheres in each unit cell. Of course the configuration 
of spheres in each cell is the same. A shear flow is set up by moving one of the walls 
at a fixed velocity uy, parallel to the wall. The stress and velocity profile in the central 
cell are measured, and from this the viscosity can be determined; once again results for 
quasi-periodic systems of three unit cells and five unit cells are essentially identical. The 
stress in the suspension includes contributions from the fluid stress, together with 
particle-fluid interactions; these are computed in a similar way to the torques, by 
summing r b f f r b )  over the particle surface. As before, the simulations manage to pick 
up the effects of lubrication quite well, although at the highest volume fraction the 
smaller sphere (a z 2.5) is inadequate. A drawback of the present scheme for imposing 
an external shear flow is that, at higher solids concentrations, the velocity gradient is 
non-uniform in the outer two cells, although it is quite uniform in the central cell 
(figure 5). Thus the time it takes for the system to reach steady state can be quite long, 
as many as 105-106 time steps. It is to be hoped that a better choice of initial conditions 
will speed up the approach to steady state considerably. However, the slow approach 
of the initial configuration to steady state will be less of a hindrance in dynamical 
simulations, which can use long-time averages from a single initial configuration 
instead of ensemble averages over many initial configurations. 
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FIGURE 5. Velocity profiles in sheared suspensions at 5 % and 45 % solids concentration. The circles 
show the ensemble-averaged velocity profile ; the solid circles indicate the central cell from which the 
viscosities shown in figure 4 are calculated. The velocities are scaled by the shear rate yo of a sample 
of pure fluid under the same conditions. In dense suspensions, there is a rapid change in effective 
viscosity from the pure fluid regions (x < 0 and x > 3L) to the suspension; thus the velocity profile 
is nonlinear in this region. However, the region surrounding the central cell has a linear velocity 
profile at all densities, although the local shear rate is less than yo. 

3.4. Shared nodes 
A technical difficulty arises in the simulation of many-particle suspensions which has 
not yet been discussed. As shown in figure 2 of Part 1, boundary nodes sit at points 
midway between lattice nodes. Consequently, some fraction of the boundary nodes can 
be shared between two different particles, with no intervening fluid between them. In 
such cases, the usual boundary-node update procedure cannot be applied; rather, a 
symmetrical procedure which takes account of both particles simultaneously must be 
used. Thus the boundary-node velocity is taken to be the average of that computed 
from the velocities of each particle (cf. (2.8)), 

U b  = ;[ui+ni x (Yb-Ri)+ uj+q x (Yb-Rj)]. (3.10) 

Using this velocity, the fluid populations are updated, (2.9), and the force is computed, 
(2.10); this force is then divided equally between the two particles. 

Having described a procedure which permits a physically sensible update of the 
shared nodes, we now examine its effect. Consider two boundary nodes from two 
different particles, with a shared node between them; let the boundary-node velocities 
for the two particles be u and u’, with ub = f(u + u’). The incoming populations (from 
the interior of each particle) to the shared node will be approximately (cf. (2.39) of 
Part 1) 

ni = p(a2+a3u.ci), ni. = p(a2-aTu’.ci). (3.11) 

Equation (3.11) represents the expected post-collision populations in the directions ci 
and cis, similar to (3.9) of Part 1 ;  here the viscous stresses are absent because the 
populations come from inside the particle. It is simple to see that in this case there is 
no force exerted on the boundary node, (2.10); the effect is the same as allowing the 
fluid densities to pass freely from one particle to the other, (2.9). However, in practice, 
there can be some variation from (3.11) for small spheres. 

The number of ‘shared nodes’ is generally small compared with the total number of 
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Lattice-Boltzmann Finite-difference 

a0 L F,/(?1U*) 4 A ("/.I FD/(?luA) 4 A (Yo) 

2.5 { '; 24.92 0.1004 24.77 0.0977 

24.95 0.1006 24.99 0.1008 

25.05 0.1011 25.06 0.1011 

208.5 0.4018 -5.7 157.5 0.3908 -27.0 

223.3 0.4024 0.5 201.2 0.4032 - 10.0 

225.8 0.4043 0.1 220.4 0.4045 -2.5 

7.5 {;; 
22.5 fi: 

TABLE 4. Drag forces for creeping flow past square arrays of cylinders, measured by lattice-Boltzmann 
and finite-difference methods. The values for the reduced drag, F,/rCJA, are 24.83 at 4 = 0.1 and 
217.89 at Q = 0.4 (Sangani & Acrivos 1982). The effective area fractions at 4 z 0.1 were determined 
from (3.13). The deviations at high concentrations (A) were based on Sangani & Acrivos' results, 
corrected for the effective concentration. 

boundary nodes; at fixed volume fraction the ratio is proportional to a-3. At the 
highest concentrations (45 YO) the proportions of shared nodes are 50 %, 5 %, and 1 % 
for spheres of radius 2.5, 4.5, and 8.5 respectively. At lower concentrations, the 
proportion of shared nodes declines rapidly; thus for radius 2.5 spheres the proportion 
of shared nodes at solids concentrations of 45 YO, 25 YO, and 5 % is 50 YO, 8 %, and less 
than 1 YO respectively. 

3.5. Comparison with a jinite-diference algorithm 
After the initial submission of this paper, it was suggested by one of the referees that 
it would be interesting to compare lattice-Boltzmann simulations with a finite- 
difference algorithm in which the particle is represented by an array of blocks. In this 
way the complexities associated with meshing the fluid region of a suspension of 
particles could be avoided. I have therefore written a simple program to solve the 
linearized Navier-Stokes equations 

a tP  = - V - j ,  a, j  = -Vp+vV2j, (3.12) 

with an equation of state p = pc:; in the long-time limit the incompressible creeping- 
flow equations are recovered. The equations were written onto a square mesh, using a 
second-order spatial differencing and an explicit first-order time differencing. A 
staggered mesh was used, with the density mesh displaced by half a lattice spacing in 
x and y from the velocity mesh. A cylindrical object was represented by a group of 
nodes for which a zero-velocity boundary condition was enforced, and periodic 
boundary conditions were applied to a square unit cell. The flow was driven by a 
uniform force density, applied throughout the unit cell. An identical simulation was set 
up using the lattice-Boltzmann code and the results were compared with independent 
numerical solutions (Sangani & Acrivos 1982). 

In these comparisons three difference-sized cylinders were used, with radii 
approximately 2.5, 7.5, and 22.5 lattice spacings. Runs were made at area fractions 9 
of about 0.1 and 0.4. It was verified that the finite-difference results were independent 
of sound speed and time step (in the stable regime) and scaled with viscosity in exactly 
the expected manner. In general the lattice-Boltzmann and finite-difference simulations 
are in quite good agreement with one another and with the results of Sangani & 
Acrivos (table 4). Quantitatively, the lattice-Boltzmann code performs significantly 
better at high volume fractions. Since the drag force varies rapidly at high 
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concentrations it is necessary to make a precise determination of the hydrodynamic 
radius, as in $3.1. At 4 = 0.1, the reduced drag force FD/q U, is given almost exactly 
(to 1 part in lo3) by the asymptotic expression (Sangani & Acrivos 1982) 

(3.13) 

UA is the area-averaged velocity, analogous to the volume-averaged velocity defined in 
(3.4). Equation (3.13) was used to determine the precise area fraction corresponding to 
the measured drag force; the calculated area fraction differed by no more than 0.001 
from the expected value of 4 = 0.1 (table 4). With the particle size calibrated, we can 
compare the simulations at the higher concentration with Sangani & Acrivos’ results. 
Their numerical result at 4 = 0.4 was adjusted for small variations in area fraction by 
noting that the reduced drag varies essentially exponentially with concentration in this 
region; I estimated the slope of the tangent to the curve in their figure 2 to be 8.07 at 
C$ = 0.4. The deviations of the reduced drag from the Sangani-Acrivos results are 
shown in table 4; it is clear that at high concentrations the lattice-Boltzmann 
simulations are considerably more accurate than the finite-difference results for 
comparable meshes. 

In the above calculations, the force on the cylinder was determined from the applied 
force density or equivalently from the pressure gradient. In the lattice-Boltzmann 
method, the force on the particle can also be determined directly, (3.2), and is in exact 
agreement with the computation based on pressure drop. In the finite-difference 
simulations described above, the same relation was assumed to hold, but in reality the 
force on the object can only be calculated approximately; the viscous stresses must be 
determined by numerical differentiation in the region around the particle and then 
extrapolated to the particle surface. Thus in multi-particle suspensions, where the 
forces on the individual particles are required, lattice-Boltzmann methods have a very 
significant advantage. 

The other important aspect of this comparison is the computational costs of the two 
methods. Although the lattice-Boltzmann algorithm requires updating 18 population 
densities, the collision processes (which dominate the computation time) are local to a 
single site. By contrast a finite-difference or finite-element code need only update four 
fields (velocity and pressure), but must manipulate information from neighbouring 
mesh points as well. Of course the lattice-Boltzmann code requires more memory, but 
on modern computers this is not a serious limitation. In three dimensions the lattice- 
Boltzmann code takes between 100 and 300 floating-point operations to update a single 
site, depending on whether it is a Stokes flow or a nonlinear flow. The node update 
rates range between lo4 and lo5 per second on a workstation and up to lo6 per second 
on a vector supercomputer. This is comparable to a typical finite-difference/finite- 
element code, and probably a little faster. 

47c 
In 4-i-0.738 +4-0.887$2+2.03843 + 0(44)’ 

FD - -- 
7UA 

4. Finite-Reynolds-number flows 
The simulation technique can be carried over, without modification, to flows at non- 

zero Reynolds numbers. However, the simplified form for the equilibrium distribution 
(equation (2.39) of Part 1) cannot be used; the appropriate distribution is given in (2.5) 
of Part 1. Two steady-state flows, up to Reynolds number Re = 200 have been studied : 
flows past a column of cylinders and flows past a simple-cubic array of spheres. Our 
results are compared with finite-difference and finite-element solutions of the 
Navier-Stokes equations. 
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FIGURE 6. Streamlines for steady incompressible flow past a column of circular cylinders at various 
Reynolds numbers. A small portion (i) of the total channel length, near the cylinder, is shown. 

4.1. Column of cylinders 

The problem of fluid flow past a circular cylinder has been studied by many authors. 
Since our simulation method is designed for fairly dense suspensions, its use of a 
regular mesh of lattice nodes makes it rather inefficient for studying flows past isolated 
objects. A reasonable compromise is a column of closedly spaced cylinders (Fornberg 
1991), which can be simulated by a long narrow channel with periodic boundary 
conditions. Our simulations are restricted to a single geometry, namely a column of 
cylinders separated by 10 cylinder radii. Test calculations with a small cylinder 
(a = 2.1) showed that drag coefficients within 1 % of the infinite channel length result 
could be obtained for a channel length L = 16W = 160a. The flow was driven by 
setting the velocity of a single row of nodes to the desired input velocity U,; the 
cylinder was placed 4 W  = 40a downstream, leaving a maximum wake length of 
12W = 120a. Simulations were run with cylinders of input radii a, = 1.5, a, = 4.5, and 
a, = 9.5 with a kinematic viscosity u = 0.01. The effective hydrodynamic radii of the 
cylinders were determined to be 2.1, 5.1, and 10.1 respectively. The calibration of the 
cylinder size was performed in an analogous way to that for spheres, by measuring the 
drag force of a dilute square array of cylinders at Re = 0, then using (3.13) to determine 
the effective area fraction. 

A contour plot of the streamlines for the largest (a = 10. I)  cylinder is shown in figure 
6 at various Reynolds numbers (Re = 2U,a/u); the maximum Mach number (at 
Re = 100) is 0.07. The flow at Re = 100 is eventually unstable; however, the instability 
is sufficiently delayed that a quasi-steady state could be reached before its onset. A 
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Re a c, Lw y c  xc Y, S 

3.76 
4.08 1.6 

10 { 1::; 4.21 
FD 4.32 

2.60 
2.82 2.5 -0.02 1.7 0.4 

2.6 -0.009 1.7 0.4 
2.65 -0.011 1.65 0.40 

20 { 1:;; 2.91 
FD 2.98 

1.97 
2.11 4.7 -0.03 2.0 0.5 

40 { 1!i 2.17 
FD 2.19 

1.5 -0.0001 1.2 0.2 
1.49 -0.0006 1.22 0.23 

4.7 -0.039 2.31 0.53 
4.74 -0.042 2.24 0.54 

1.70 9.0 -0.11 3.7 0.6 0.22 
100 [l;:: 1.67 10.7 -0.121 3.91 0.79 0.21 

FD 1.61 10.3 

TABLE 5. Steady flow past a column of cylinders at Reynolds numbers up to Re = 100 (Re = 2U0 a/v). 
Simulations for cylinders of radii a = 2.1, 5.1, and 10.1 are compared with accurate finite-difference 
solutions (FD) of the time-independent Navier-Stokes equations (Fornberg 199 1) for the same 
channel width (or cylinder separation) W = 10a. In addition to the drag coefficient C, = I$/pU: a, 
the wake length L,, the minimum stream function Yc, and its location [X,  51, were determined from 
the contour plots (figure 6) of the recirculation zone behind the cylinder. The Strouhal number 
S = 20, a/ U, is also reported (w, is vortex shedding frequency) 

F, L 4/(67qaU,) Re 47 L F,/(GqaU,) Re 

49.5 9.4 
44.0 10.5 
44.4 10.5 

52.4 35.4 
48.3 38.4 
49.3 37.6 

58.4 111.2 
52.9 122.9 

33 54.6 118.9 
55.0 118.1 

33 52.2 71.1 
52.5 70.7 65 65 

56.4 164.5 
56.8 163.3 130 65 58.4 206.7 

11; 
42.8 0 ‘I 33 

1’: 

55.2 50.9 67.2 72.9 

49.1 0 
42.7 0 5 

50.5 18.4 
45.9 20.2 20 
46.6 19.9 

0 1 1’: 
1 3 3  

10 (1’: 

70 1:; 40 1;: 
100 {;; 

TABLE 6. Steady flow past a simple-cubic array of spheres at maximum packing B = 1 -in. The 
volume-averaged flow velocity U,, (3.4), was computed for various pressure gradients and sphere 
sizes. Results for a drag force F, = 0 correspond to creeping flow. The Re = 0 friction coefficient (Zick 
& Homsy 1982), F,/(67cqaU,) = 42.1, can be reproduced to within 2%. The Reynolds number 
Re = 2U,a/ev. 

detailed comparison of the simulation results with Fornberg’s finite-difference code 
is shown in table 5.f It can be seen that the lattice-Boltzmann simulations reproduce 

t Fornberg’s published results begin at Re = 100. Because his code utilizes the symmetry present 
in steady flows, he obtains time-independent solutions at all Reynolds numbers. Our simulations 
exhibit vortex shedding at higher Reynolds numbers; steady solutions could only be obtained up to 
Re = 100. Dr Ramesh Natarajan kindly ran some finite-difference calculations at intermediate 
Reynolds numbers for these comparisons. 
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FIGURE 7. Pressure drop as a function of Reynolds number for steady flow past a simple-cubic array 
of spheres. The simulation results for different-sized spheres (LBE) are shown as solid symbols; the 
open symbols are finite-element results (Tompson 1983). The solid line was fitted to the data of 
Lahbabi & Chang (1985). 

all the measured characteristics of the flow quantitatively, including the minimum in 
the stream function at the centre of the recirculation zone. 

4.2. Simple-cubic lattice of spheres 

These simulations are similar to the calculations of the creeping-flow translational 
friction coefficient described in 3 3.1. The sample contains a single stationary sphere of 
radius +L in a cubic box of length L with periodic boundary conditions; the flow is 
driven by a uniform force density, as before. The only difference is that the full 
nonlinear form for the equilibrium distribution is used, with a kinematic viscosity 
u = 0.01 ; the Mach number is then small, typically of the order of lo-'. The results are 
reported in table 6. The input radii (a ,  = :L - 0.2) were determined so that the effective 
radius a was as close as possible to +L; the choice of input radius is consistent with the 
result reported in table 3 for u = A. 

It can be seen that the mean flow velocity U,  (or Reynolds number) for a fixed drag 
force (FD = - VVp) converges quite rapidly with increasing particle radius (or unit cell 
length L). Thus it is surprising that the simulation results do not agree at all with the 
results of Lahbabi & Chang (1985), who studied the identical problem via a truncated 
mode expansion of the Navier-Stokes equations. A comparison is shown in figure 7;  
the reduced pressure gradient Vpa3/pu2 is plotted us. Reynolds number Re = 2Uv alsv, 
where e = 1 -& is the porosity. (Note that Lahbabi & Chang use a different definition 
of Re, based on the particle radius rather than the diameter; thus their Reynolds 
number is smaller than ours by a factor of 2.) At Reynolds numbers greater than about 
40 the simulations diverge from Lahbabi & Chang's results; they differ by about a 
factor of two at Re = 200, with the simulations predicting a much smaller pressure 
drop. To investigate this discrepancy further, a finite-element model of the problem 
(Tompson 1983) has been run; these results, shown as open symbols in figure 7, are in 
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excellent agreement with the lattice-Boltzmann simulations. The finite element code 
LAMFLOW used for these comparisons is based on a penalty-function formulation of the 
time-independent Navier-Stokes equations (Hughes, Lin & Brookes 1979). The 
calculations used 148, 8-node prismatic elements to represent one quadrant of the 
periodic unit cell. The code was recently resurrected for this problem by its author, Dr 
Andy Thompson. The lattice-Boltzmann/finite-element results taken together suggest 
that the calculation of Lahbabi & Chang is incorrect. Moreover, they indicate that 
finite-Reynolds-number corrections to the Stokes drag in a regular arrays of spheres 
are considerably smaller than in random arrays; only about 20% at Re = 200. 

5. Time-independent hydrodynamic interactions 
The classical description of colloidal particle dynamics is the Einstein-Smoluchowski 

equation, in which the details of the short-time dynamics are ignored. The 
hydrodynamic interactions are assumed to be fully developed; in other words there is 
a complete separation of timescales between the dynamics of the fluid and the 
(diffusive) motion of the solid particles. In reality, hydrodynamic interactions develop 
by the diffusion of fluid vorticity, with a characteristic timescale rf  = a2/v .  Lattice- 
gas/lattice-Boltzmann simulation methods are motivated by the observation that, by 
solving time-dependent Navier-Stokes equations, the correct hydrodynamic forces and 
torques can be computed from purely local interactions; thus the computational cost 
scales linearly with the system size. The main drawback of the present scheme is that 
for low Reynolds numbers an extra timescale separation between the solid and fluid 
motions must be introduced, to allow time for the steady-state hydrodynamic 
interactions to develop. In practice this is not such a severe constraint, as can be seen 
from the following considerations. The timescale characterizing the particle motion is 
r, = a/U,  where U is a typical particle velocity; the ratio r f / r ,  is just the Reynolds 
number Re. It is known that the creeping-flow limit is generally equivalent to 
conditions in which Re < 1 in dense suspensions and Re < 0.1 in dilute suspensions 
(Happel & Brenner 1986); for a particle radius a = 5 and kinematic viscosity v = f ,  
this implies particle velocities less than 0.01. Thus a typical dynamical simulation 
(Ladd 1993 a), where the particles must travel distances on the order of 100 radii, would 
require about lo5 time steps. Based on a particle radius a = 4.5, a complete 
sedimentation run would then involve of the order of lo8 node updates per particle; a 
modern workstation (IBM 580 or HP 735) can update more than lo5 nodes per second, 
so that a complete run would take about 15 minutes per particle. Moreover, the code 
can be readily executed in parallel, on many processors at once. Thus simulations of 
lo5 or more spheres should be feasible on a massively parallel supercomputer. Even 
with the present code, systems of 128 spheres (see 96) are simulated routinely (mainly 
on SPARC I and SPARC I1 computers), and in a few instances systems of 1024 spheres 
(on a SPARC 10 or an IBM 580). 

Although the original motivation for developing this method was purely 
computational, the emergence of diffusing-wave spectroscopy (Weitz et al. 1989) has 
initiated experimental studies into the motion of colloidal particles at very short times. 
Underlying the experimentally observed behaviour (Zhu et al. 1992; Kao, Yodh & Pine 
1993) are both time- and space-dependent hydrodynamic interactions; with this new 
simulation technique we have a unique capability to determine these interactions ab 
initio (Ladd 1993b). Since these experiments track the Brownian motion of colloidal 
particles, a brief discussion of the relevant simulations will be deferred to $6; an 
account of this work has already been reported (Ladd 1993b). Here the focus is on the 
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FIGURE 8. Frequency-dependent torque on a rotating sphere. The modulus and phase lag (in degrees) 
of the drag torque on a sphere undergoing small-amplitude rotational oscillations are shown as a 
function of the reduced frequency o a z / v .  Results are shown for two different-sized spheres at the same 
fluid viscosity v = +; the solid lines are taken from expressions given in Landau & Lifshitz (1959). 

motion of isolated spheres, as a means to verify the accuracy of the simulations in 
tracking the temporal and spatial development of the hydrodynamic forces (see also 
figure 5 of Part 1). 

The unsteady motion of an isolated sphere has been worked out in some detail; the 
basic results for low Reynolds number (ignoring fluid inertia) can be found, for 
example, in Landau & Lifshitz (1959). Recently this work has been extended to small 
but finite Reynolds number (Lovalenti & Brady 1993); however, at present our results 
are limited to the time-dependent Re = 0 case only. We begin by investigating 
the motion of a sphere undergoing small-amplitude rotational oscillations O(t) = 

52, cos (wt )  ; the in-phase and out-of-phase components of the drag torque were 
measured to determine the modulus of the torque Iq and the phase lag $ (see figure 
8). Since there is fluid both inside and outside the sphere, contributions to the drag 
torque from both regions are summed together to give the solid lines in figure 8. These 
expressions, in terms of the reduced frequency w* = waz /v  and the zero-frequency drag 
coefficient tR = 8nya3, are (Landau & Lifshitz 1959) 

. .  

It can be seen (figure 8) that the simulated phase lag is inaccurate at sufficiently high 
frequencies, when the period of oscillation (27c/w) is less than about 10 simulation time 
steps. High-frequency motion can be accurately simulated by either increasing the size 
of the spheres or by decreasing the viscosity of the fluid. However, reduced frequencies 
(waz/u) larger than 10 are unimportant in most instances. 

At low frequencies, the drag forces and torques from the interior fluid reduce to the 
additional inertial drag of the oscillating mass of fluid; for rotational oscillations the 
interior torque becomes Tat = &7ctpa5ioD0 (equation (5.1)). Since the added inertia 
from the interior fluid can be readily accounted for (as will be seen shortly), only the 
deviations in the interior drag force from the inertial drag are significant; these 
deviations are proportional to wz, to leading order. Thus the effects of the interior fluid 
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FIGURE 9. Frequency-dependent torque on a rotating sphere as a function of the relative viscosity 
inside and outside the sphere. The modulus and phase lag (in degrees) of the drag torque on a sphere 
undergoing small-amplitude rotational oscillations are shown as a function of the reduced frequency 
W U ' / V , , ~ ,  for various viscosity ratios v, = v J v , , ~ .  Results are shown for viscosity ratios of 4 and 16; 
the hydrodynamic radii of the spheres are (from table 3 )  4.67 and 4.79 respectively. The broken lines 
are theoretical results, including the full interior torque, for the two different viscosity ratios ; the solid 
line includes just the inertial torque, corresponding to v, = a. Note that the reduced frequency is 
based on the exterior fluid viscosity v , ,~ .  

can be minimized by using a smaller viscosity in the exterior fluid than in the interior 
fluid as shown in figure 9. Here the interior fluid viscosity was kept fixed at v = f 
whereas the exterior fluid viscosity varied between $ and &. It can be seen that for the 
same-size sphere (a,, = 4.5) agreement between simulation and theory improves rapidly 
with increasing viscosity ratio (see also results in figure 8 for a = 4.53); moreover 
deviations of the drag torque from the asymptotic form (exterior torque plus interior 
inertia) become small. However, it will be seen that this refinement is unnecessary in 
time-domain simulations, since these high frequencies play a very small role. 

In figure 10 the decay of an initial translational velocity U(0) or rotational velocity 
Q(0) of a sphere is compared with theoretical predictions based on an inverse Laplace 
transform of the frequency-dependent equations of motion (Hauge & Martin-Lof 
1973) 

( 5 4  I U(0) 
-iw(M+M,)+['(w)' 

Q(0) 
- iw(I+ I,) + c R ( w ) .  

U(w) = 

Q(w) = 

The friction coefficients that appear in (5.2) are the exterior friction coefficients 

the internal drag forces are approximated as purely inertial mass; iwM, = $npa3iw for 
the translational friction and i d f  = +cpa5iw for the rotational friction. 

The decay of the translational velocity of a sphere can be expressed analytically (for 
example Hinch 1975), but the rotational velocity has not been computed over the full 
time domain. Thus we follow Hauge & Martin-Lof (1973) and convert the inverse 
Laplace transform to a definite integral (by contour integration) and then evaluate this 



330 A. J .  C. Ladd 

1 

U(t) lo-' 

Q(t)  

10-2 

10-3 
1 10 100 1000 

t 

FIGURE 10. Translational velocity U(t) and rotational velocity Q(t)  of an isolated sphere. The time- 
dependent velocities of the sphere are shown as solid symbols; the solid lines are theoretical results, 
obtained by an inverse Laplace transform of the frequency-dependent friction coefficients (Hauge & 
Martin-Lof 1973) of a sphere of appropriate size (a = 2.61) and effective mass (p,/p = 11); the 
kinematic viscosity of the pure fluid v = f. 

integral by numerical quadrature to get the solid lines in figure 10. The mass and inertia 
of the solid particle comprise the sum of the assigned mass M or inertia I ,  used to 
update the particle velocities, (2.12), and the mass Mf = $x'pa3 or inertia If = +cpa5 of 
the interior fluid. Although there are no free parameters in the comparison of 
simulation with theory, the agreement is essentially perfect over the whole time 
domain. This supports the earlier assertion that the interior fluid contributes an inertial 
force due to its extra mass, and very little else. 

It is appropriate at this point to comment on the normalization of the theoretical 
results; they are not normalized to the t = 0 velocities U(0) and Q(0) but to something 
slightly less. There are two reasons for this. First, since the initial velocity is applied 
only to the particle and not to the interior fluid also, translational momentum Mf U(0) 
and rotational momentum I fQ(0)  are quickly lost to the internal fluid which thereafter 
moves essentially as a rigid body. Second, the theoretical results apply to an 
incompressible fluid; thus there is the well-known ' added-mass ' effect which accounts 
for the momentum carried off by sound waves in a real fluid. Our lattice-Boltzmann 
simulations are slightly compressible; thus a fraction of the initial momentum 
($Mf U(0)) is carried off almost instantaneously, after which the velocity tracks the 
renormalized incompressible theory. Of course, there is no added mass for the 
rotational velocity. Thus the overall normalizations at t = 0 are M/(M+#,) U(0) and 
I/V+ If) Q(0). 

6. Fluctuations 
Suspensions of sub-micron-sized particles undergo Brownian motion, due to the 

thermal fluctuations in the fluid. It has been shown (Ladd 19936) that fluctuations can 
be incorporated into lattice-Boltzmann simulations by addition of a random 
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FIGURE 1 I .  Translational velocity correlation function (U( t )  U(0))  and rotational velocity correlation 
function ( Q ( t ) Q ( O ) )  of an isolated sphere, normalized to their t = 0 values. The time-dependent 
correlation functions are shown as solid symbols (with statistical error bars). The solid lines are 
theoretical results, obtained by an inverse Laplace transform of the frequency-dependent friction 
coefficients (Hauge & Martin-Lof 1973) of a sphere of appropriate size (a = 2.61) and mass 
(pJp = 11); the kinematic viscosity of the pure fluid v = f. 

component to the fluid stress tensor. Thus the post-collision momentum flux in (2.4) 
has, in addition, a fluctuating stress Q’, sampled from a Gaussian distribution and 
uncorrelated in space and time (Landau & Lifshitz 1959), 

the variance A is proportional to the temperature of the fluctuating fluid. The exact 
relationship between the coefficient A and the effective temperature is discussed in Part 
1, equation (4.18). 

As an initial test of the fluctuating lattice-Boltzmann equation, a single sphere (in a 
periodic unit cell) was tracked as it moved under the influence of time-varying forces, 
derived from the fluctuating fluid. The velocity correlations were measured for 
relatively short times, so that they were unaffected by the periodic boundary 
conditions. In figure 11 it can be seen that, within the statistical error bars, the 
normalized velocity correlation functions are identical to the steady decay of the 
translational and rotational velocities of the same sphere (figure 10); thus our 
simulations satisfy the fluctuation-dissipation theorem. Once again there are no 
adjustable parameters in these comparisons. 

Next, consider the motion of suspended colloidal particles at very short times, prior 
to the onset of Brownian motion. Diffusing-wave spectroscopy (Zhu et al. 1992) has 
shown that if the mean-square displacement is normalized by the self-diffusion 
coefficient multiplied by the time (AR2(t))/6D,(q5) t ,  and plotted us. a reduced time t / 7 ,  
then, for all solids volume fractions, there is a scaling time ~ ( 4 )  which collapses the 
experimental data onto one master curve, indistinguishable from the isolated-sphere 
result. Moreover 7 seems related to the time it takes fluid vorticity to diffuse over a 
particle radius; values of 7 determined from the scaled mean-square displacements are 
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FIGURE 12. Scaled mean-square displacement (AR2( t ) ) /6D,  t at short times us. reduced time t / r .  
Simulation results for 128 spheres (solid symbols) are shown at packing fractions 4 of 5 YO, 25 YO and 
45 % ; the solid line is the isolated sphere result. The simulation parameters were the same as in figure 
11 except that a sphere of radius 4.5 was used at the highest volume fraction. 

in good agreement with independent estimates of the vortex diffusion time q,(q5)/pa2, 
based on the high-frequency suspension viscosity 7,. We have discussed this scaling in 
an earlier work (Ladd 1993b); here we just point out that the simulations reproduce 
the experimentally observed scaling over the whole time and density range. Simulation 
data for a number of Brownian particles ( N  = 128) under the same scaling is shown in 
figure 12. Results with different-size systems ( N =  16 and 1024) indicate that the 
periodic boundary conditions have a negligible effect on the 128-sphere results for 
times up to about 1007. The scaled data at various volume fractions collapse onto the 
dilute (single-particle) result, in excellent agreement with experiment, both at very short 
times (Kao et al. 1993) and at somewhat longer times (Zhu et al. 1992). Moreover, the 
self-diffusion coefficient and viscosity that are required to scale the mean-square 
displacement are in quantitative agreement with independent simulations and 
experimental data (see Ladd 1990); a comparison is shown in figure 13. 

When the fluctuating lattice-Boltzmann equation is applied to a system of solid 
particles, it is found that the translational and rotational velocities of the particles come 
into approximate thermal equilibrium with the fluctuations in the fluid. Because our 
model does not conserve the total energy, but instead preserves a balance, on average, 
between viscous and fluctuating forces, there is no equipartition principle to force an 
even division of energy between all the modes in the system. In fact we do not find an 
exact thermal equilibrium between solid and fluid (see table 7); in general the 
temperatures characterizing translation and rotation are similar, but typically 10-20 Yo 
less than the effective temperature of the fluid fluctuations. Moreover, the average 
kinetic energy of the solid particles is weakly dependent on the particle size and solids 
concentration. Thus, in studies of particle diffusion, temperature will be taken to be 
defined by the mean translational kinetic energy; for the shear viscosity, there is some 
ambiguity in defining the temperature which will be discussed later. 
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FIGURE 13. Scaled relaxation time T / T ~  ( T ~  = a z / v )  and self-diffusion coefficient DJD, us. packing 
fraction q5. The data points were determined from the scaling of the 128-sphere simulation data for 
various particle sizes. The uncertainty in fitting the data is about 5 %. Independent results (Ladd 
1990) for q / q ,  (solid lines) and DJD, (dashed lines) are shown for comparison. 

N =  16 N =  128 

4 a T r m  T o t  T r m  T o t  

0.196 0.164 0.202 0.166 
0.215 0.202 0.218 0.201 0.05 {i::; 

0.183 0.158 
0.25 I:::; 0.195 0.196 0.204 0.196 

14.53 0.202 0.213 

12.61 0.183 0.180 
0.187 0.206 0.193 0.203 

0'45 1;::; 0.207 0.226 

TABLE 7. Translational and rotational temperatures of suspended spheres, based on mean-square 
translational and rotational velocities; the effective temperature of the fluctuating fluid is 0.25. 

The transport coefficients of a suspension of solid particles can be determined from 
the Green-Kubo relations (Hansen & McDonald 1986). The simplest is the self- 
diffusion coefficient, which can be computed from the average mean-square 
displacement or from the velocity autocorrelation function : 

1 
D, = limG(AR(t).AR(t)) = ( U ( t ) .  U(0))d t .  

t*m 

For comparison purposes, it is simpler to look at normalized correlation functions 
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FIGURE 14. Diffusion coefficients of random arrays of spheres. Self-diffusion coefficient D, and 
collective mobility p from simulations of 16 spheres (filled symbols) and 128 spheres (open symbols) 
are compared with numerical solutions of the Stokes equations (Ladd 1990). Results from moment 
expansions of the Oseen equation are shown as solid lines ( N  = 16) and dashed lines ( N  = 128). The 
statistical errors in the fluctuating lattice-Boltzmann simulations are comparable to the size of the 
plotting symbols. 

where macroscopically (U(0).  U(0)) = 3k, T I M ;  this expression is used to define the 
temperature of the suspension. A relaxation time rD can be defined as the integral of 
the normalized velocity correlation function 

CC 

'D = lo f D ( t > ;  (6.4) 

thus the ratio DJD, = 7D/70,  with 7o = M/(6x7u). The integral in (6.4) and similar 
fluctuation expressions should be interpreted as a discrete quadrature, i.e. 

where the factor of 2 arises because particle velocities are updated every two time steps. 
The ratio D,/Do is shown in figure 14 for various volume fractions and particle sizes, 

using systems of 16 and 128 spheres. The agreement is quite good, but, compared with 
the steady non-equilibrium flows (figure 4), larger particles are required at high 
densities for the same accuracy. This implies that fluctuation dissipation is not exactly 
satisfied at high solids concentrations (otherwise both measures of the diffusion 
coefficient would be the same); I suspect these discrepancies come from the effects of 
the shared nodes (0 3.4) which may behave differently for fluctuating fluids than for 
steady flows. However, there is good agreement for the larger spheres, where the 
contribution from the shared nodes is negligible. 

The collective or mutual diffusion coefficient D is related to fluctuations in the total 
velocity of the solid phase 

N 

u, = c ui. (6.6) 
i=l 

The relationship between the fluctuations in U, and the diffusion coefficient D is 
discussed in the Appendix. Here, just the final result used for comparison with 
creeping-flow theory is quoted, 
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FIGURE 15. High-frequency shear viscosity of random arrays of spheres. Shear viscosities from 
simulations of 16 spheres (filled symbols) and 128 spheres (open symbols) are compared with 
numerical solutions of the Stokes equations (Ladd 1990). The statistical errors in the fluctuating 
lattice-Boltzmann simulations are comparable to the size of the plotting symbols. 

where X f  is the mass fraction of the fluid. The results (figure 14) are quite comparable 
to the earlier results for collective mobility (figure 4) even at high concentration. This 
is further evidence that the relatively slow convergence of the self-diffusion coefficients 
(figure 14) arises from the shared nodes, which play a minor role in collective diffusion 
because of the absence of lubrication. 

In $4 of Part 1, a discretized Green-Kubo relation was derived, relating the viscosity 
of the pure fluid to the equilibrium stress fluctuations; in our present notation, (4.13) 
of Part 1 can be written as 

where Zf is the fluid stress tensor. Equation (6.8) can be applied to solid-fluid 
suspensions by including both the fluid stress tensor ((4.12) of Part 1) and the 
solid-fluid stress Zs, summed over all the solid-particle surfaces. This latter contribution 
is computed in a similar way to the particle torques, summing the symmetric 
components of rbflrb) over all the boundary nodes. The fluid-stress correlation 
function and the total stress (Zt  = Zf + Zs) correlation function have been computed; 
by integrating these correlation functions the viscosity ratio qm($)/y can be computed 
from (6.8). However, the estimated high-frequency viscosity of the suspension is then 
too low, by up to 20% at high volume fraction. The reason is that energy is not 
uniformly distributed between the particles and the fluid, so that the effective 
temperature in (6.8) is different for the particle contributions and the fluid 
contributions. We have corrected for this by using the fluid temperature for the 
fluid-fluid contribution and the particle temperature (see table 7) for the particle-fluid 
terms. A comparison of viscosities is shown in figure 15 ; the shear stress was averaged 
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over all five components. These angle-averaged viscosities are very insensitive to the 
number of particles so that results for 16 particles and 128 particles are 
indistinguishable. The agreement is again good, although the method of computation 
is not totally satisfactory. It may transpire that viscosities can only be computed 
reliably by some kind of external flow simulation as in 33.3, and thus we would have 
to reserve the Green-Kubo method for quantities, like diffusion, which involve only 
particle-particle correlation functions. The question of the thermal equilibrium 
between solid and fluid needs to be researched in more detail; hopefully a method of 
including fluctuations will be found which succeeds in bringing about a better 
equipartition of energy between solid and fluid. 

7. Conclusions 
The combination of molecular dynamics for the particulate phase and the fluctuating 

lattice-Boltzmann equation for the fluid phase has been shown to be a viable technique 
for quantitative simulations of hydrodynamically interacting particles. Even using 
small solid particles, with radii less than 5 lattice spacings, accurate results for 
hydrodynamic transport coefficients (permeability, sedimentation velocity, self- 
diffusion coefficient and viscosity) have been obtained over the whole range of packing 
fractions. The method is also very flexible; the particle size and shape, the electrostatic 
interactions, the flow geometry, the PCclet number and the Reynolds number, can all 
be varied independently. 

The technique is valid, without modification, at finite Reynolds number; lattice- 
Boltzmann simulations of flow past a column of cylinders are in quantitative 
agreement with finite-difference solutions at Reynolds numbers up to 100. The results 
for a dense array of spheres are in excellent agreement with finite-element calculations, 
but disagree with the truncated-mode analysis of Lahbabi & Chang. The simulations 
suggest that fluid inertia has a much smaller effect in periodic arrays than in random 
media. 

It has been shown that fluctuations can be incorporated into the lattice-Boltzmann 
equation in a very straightforward fashion, and then used to simulate the dynamics of 
colloidal particles in suspension. The short-time transport coefficients of these 
suspensions has been accurately determined from autocorrelation functions of the 
fluctuations; the long-time transport coefficients could be determined by tracking the 
motion of particles moving under the influence of Brownian forces. Unfortunately, the 
mechanism of thermal equilibration is not yet fully understood; this should be studied 
more thoroughly in future. 
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Appendix. Collective diffusion coefficient 
The Green-Kubo expression for the collective diffusion coefficient of a binary 

mixture can be derived from the fluctuations in concentration; here the standard 
procedure (for example Hansen & McDonald 1986) is outlined. The macroscopic 
equations of continuity for the two species, 

a,Pi+v.(piui) = 0, (A 1) 

can be cast into the form of an equation for conservation of mass ( p  = p1+p2) of the 
usual form, and an equation for the (mass-weighted) concentration c = pJp:  

a,c+u.Vc = -p-lV.j; (A 2) 

j = pl(ul -u)  is the diffusive flux of species 1, defined relative to the local stream 
velocity u = ( p l  u1 +pz u2)/p.  The diffusive flux can also be written in a more symmetric 
form j = (1 -c)p1u1-cp2uz. 

A microscopic expression (in terms of molecular coordinates) for the spatial Fourier 
transform of the concentration can be derived by linearizing the fluctuations in c about 
the mean densities &, 

&Spl(k7 t)-&Sp,(k, t )  X2xie l e~ ik .R~Ml-X,x .  e-ik.R- Sc(k, t )  = - - - Zt-2 ' M z ;  (A 3)  
P2 P 

here the Xi indicate average concentrations p i /p ,  that are spatially invariant. Similarly, 
the diffusive flux can be expressed microscopically as 

j (k ,  t )  = ecik..j(r, t )  dr = X ,  C ecik' RiM, Ui - Xl C ePik' RfMz Ui. (A 4) s ( € 1  i e 2  

Using the constitutive equation 
j = -pDVc 

to define the collective diffusion coefficient D, it is found, after some elementary 
manipulations, that 

where J is the k = 0 limit of (A 4) and the small-k limit is taken in the denominator 
also. The equal-time concentration fluctuations can be expressed in terms of partial 
structure factors 

(A 7 )  1 C C e-ik.Rii; 
Sab(k) = ~ 

(N, NO)' i e a  i e b  

p2(c(k) C(-k))k=o = X z  M l  M 2 [ N 2  S11(o)-2(Nl N2)6s12(o) -k Nl s2z(0)1. (A s> 
The equal-time fluctuations in the diffusive flux are readily evaluated from the 
Maxwell-Boltzmann distribution of velocities, 

(J(0) . J ( O ) )  = 3k, T X ,  X,(Nl Ml + Nz M J .  (A 9) 

We now specialize to the case of a particle suspension, for which the number of solid 
particles (N, )  is much less than the number of solvent molecules ( N J ;  thus (A 8) 
simplifies to 

p2(c(k)  C ( - k ) ) k = O  = X 2  M 2  N 2  S,l(o), (A 10) 
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where S,,(k) is the structure factor for the solid particles. From (A 6), (A 9), and 
(A lo), 

(J(t>.J(o)) dt. 
(J (0)  - J(0)) 

D =  

In the simulations, fluctuations in J can be related to fluctuations in the velocity of the 
solid phase (by momentum conservation), i.e. J = Ml &,, Ui = M I  U, (equation 
(6.6)). Using the relation 

we arrive at (6.7) for the ratio ,U/,U,,. 
The factor Xi1 arises from the conservation of total momentum, which is implied in 

the definition of concentration fluctuations (A 3). In a canonical ensemble, where the 
total momentum and energy are free to fluctuate, 

On the other hand, at fixed total momentum P, fluctuations in U, are reduced 
(Lebowitz, Percus & Verlet 1967), 

(U,(O). U,(O))P=O = (U,(O). U,(O))-(PP):ap(U,>P.aP(~,>P 
= ( U c ( o ) *  Uc(o ) ) -dkB  Tap(U,>p:ap(uc>p,  (A 14) 

where A = N I M l + N , M ,  is the total mass of solid and fluid. For fixed total 
momentum, the average particle velocity is P / A ,  and 

(A 15) Nl a,( u,), = - 1. A 

Combining (A 14) and (A 15), the fluctuations at constant total momentum are found 
to be 

Thus the ensemble dependence of the zero-time fluctuations accounts for the factor 
X;'; in an ensemble where the total momentum is free to fluctuate this factor is absent. 
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